REPORT

RANGE CONDITION AND EVALUATION
I. General Information and Evaluation

A. Location and Area

The "Home" ranch and "Deepwell" ranch are located 14 miles west of Roswell, New Mexico, on the Pine Lodge road. The "Lincoln County" ranch is 32 miles west of Roswell on the Pine Lodge road.

Federal lands - 41,974 ac.
Private lands - 16,270 ac.
State lands - 2,215 ac.
Uncontrolled - 385 ac.
Total - 61,944 ac.

Six-nine percent federal range.
Vegetative Data

Vegetative Types

<table>
<thead>
<tr>
<th>Type</th>
<th>Code</th>
<th>Area (ac)</th>
<th>Cattle (cyl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Ber Bqr Bhi</td>
<td>24</td>
<td>2800</td>
<td>84</td>
</tr>
<tr>
<td>1-Bqr Ber Hmu</td>
<td>23</td>
<td>10,830</td>
<td>311</td>
</tr>
<tr>
<td>1-Bqr Ber Tpu</td>
<td>18</td>
<td>9,880</td>
<td>222</td>
</tr>
<tr>
<td>1-Bhi Bqr Boll</td>
<td>15</td>
<td>1,570</td>
<td>30</td>
</tr>
<tr>
<td>1-Ber Mto Bqr Tpi</td>
<td>22</td>
<td>3,650</td>
<td>100</td>
</tr>
<tr>
<td>1/6(I)-Bqr Mto GUT</td>
<td>12</td>
<td>1,080</td>
<td>16</td>
</tr>
<tr>
<td>1-Bqr Ber ARI GUT Nmi</td>
<td>14</td>
<td>10,040</td>
<td>177</td>
</tr>
<tr>
<td>1-Bqr Ber MUH GUT</td>
<td>21</td>
<td>4,940</td>
<td>117</td>
</tr>
<tr>
<td>1-Bqr Bcu Nmo Nmi</td>
<td>18</td>
<td>960</td>
<td>21</td>
</tr>
</tbody>
</table>

Total: 10,788

Those types comprise the shallow soil, mixed graina uplands.

<table>
<thead>
<tr>
<th>Type</th>
<th>Code</th>
<th>Area (ac)</th>
<th>Cattle (cyl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-Hmu Bou</td>
<td>20</td>
<td>12,814</td>
<td>320</td>
</tr>
<tr>
<td>1-Hmu Sbr Bqr</td>
<td>26</td>
<td>3,330</td>
<td>108</td>
</tr>
</tbody>
</table>

Total: 428

Those types comprise the deeper soil, tobosa draws.

Key Species by General Type

1. Mixed graina uplands: Key species:
Blue grama - Boqr
Black grama - Boer
Sideoats grama - Bocu
Hairy grama - Bohi
Triodia - Tripi

(2) Tobosa overflow draws key species
Blue grama - Boqr
Tobosa - Himu
Fred Corn's Sons
Range Studies and Allotment Evaluation.

Current condition of the Fred Corn, "Home ranch" and Lincoln County ranch is in low to very low with a downward trend. The recently purchased Ronald Corn or "Sleep well ranch" is in fair to good condition with an upward trend. (The Ronald Corn ranch was purchased in Nov. 1966.)

The low range condition on the "Home ranch" and Lincoln County ranch can be attributed to low rainfall during the last few years plus past grazing management of "following the rains" under yealrlong grazing. Burro grass, fluff grass and snake weed occupy 75 to 90 percent of the shallow soiled grama types over
most of these two ranches. Burro grass is seriously invading all tobosa types that have not received adequate moisture in the past few years. The southwest corner of the "Home ranch" is in fair condition apparently because of lack of water livestock water and because rains have occurred more regularly across this portion of the ranch. Key species occupy 50-60% of the total composition in the southwest corner. However, on the rest of the "Home ranch" and "Lincoln County ranch" key species such as; blue grama, black grama and tobosa occupy only 2-25% of the total composition. All key species are in very low vigor with many of the blue
grama plants in a decadent stage. Key species composition including tobosa and blue grama occupy 45-50% of the deeper soil. Tobosa draw types.

The Ronald Corn or "Deep well" ranch is in fair to condition because of light use during the last few years. However, total density of 16-2% may indicate heavy past use. Key species composition averages 43 percent with an average total plant density of 10.2%. Key species vigor is fairly good.

The southeast pasture of the "Lincoln County" ranch is in very critical range condition. Key species such as blue grama and black grama make up only 4% of the total plant composition.
Snakeweed makes up 75% of the total plant composition with a total density of 7 per cent. The grazing capacity has been greatly reduced by the snakeweed invasion. The allottee stated the a heavy hail storm has caused this poor rain condition; however remnants key species are very scarce and remnants of key species cannot be found.

Severe erosion in the tobosa draws in both the "Home" and "Lincoln County" ranches have been controlled by erosion control structures. This erosion control was done in 1966 and 1967 and was scheduled under the annual work plan. Erosion control in the "Deep Well" ranch will be scheduled in a allotment manage-
ment plan.

General wind erosion on the "Home" ranch and the "Lincoln County" ranch is moderate because of poor ground cover on the areas in poor range condition. Snakeweed covers the sights in poor condition, particularly the south east pasture on the "Lincoln County" ranch however it gives little protection from horizontal wind erosion. It has been observed on windy days during this spring particularly, that surface movement of soil is moderate on the "Home" ranch. Dust storms originating on the low range condition areas was prominent during heavy winds.
Recommendations

The entire "Home" ranch and "Lincoln County" ranch need immediate intensive grazing management to protect the already badly deteriorated range condition. The "sleep well" ranch even though in fair condition must be included in the intensive management or it too will be subjected to conditions of abusive use as has been the history in the "home" places.

To bring back the poor range conditions a grazing system should be prescribed to allow the sparse key species to regain vigor. Sufficient rest periods for rehabilitation of vigor should be allowed so the few remaining key species can produce good seed. The grazing
system should also have rest periods in which the viable seeds from the vigorous key species can be planted and allowed enough time to germinate and produce strong seedlings. These rest periods combining rest for vigor and seedling establishment can increase the key species composition over a period of years. A simple deferred rotation grazing system may be started but key species recovery would probably be extremely slow. Along with an intensive grazing system a reduction in livestock numbers will be necessary. The total grazing capacity for the "Home Ranch" and "Lincoln"
County" ranch have been significantly reduced by the poor range condition. As a means of estimating the size of livestock number reduction, a comparison of present composition to potential key species composition can be used.

Potential key species composition

50-60% = 1485 cy/ls

Present key species composition

2-25% = ?

\[
\frac{55\%}{20\%} = \frac{1485}{x}
\]

\[x = 540\ cy/ls\]

Although key species such as blue grama and black grama and tobosa do not make up all of the
animals diet, they are the most desirable plants to livestock or they wouldn't be so scarce or utilized so heavily, so a estimate of reducing livestock numbers by comparing potential and present key species composition is not false. (Most important however, is the key species relationship to erosion and watershed management). By the above calculations, a 50% reduction in livestock would not be unreasonable on the "home" and "Lincoln County" ranches in respect to the key species providing most of the livestock forage. However, in respect to ranch economics and the objectives of proper range management a 25-30% reduction in
Livestock numbers would be most realistic. To start an intensive grazing system it is suggested that the licensed numbers be brought down from 1485 to 1000.

A "pre-plan" grazing system may be needed to insure enough forage for the livestock as well as enable a graduated livestock reduction favoring ranch economics. A deferred-rotation system could handle this "pre-plan" management. However, to achieve the needed restoration of key species vigor and the increase in key species composition which will in turn assure soil and watershed protection a rest-rotation grazing system must be programmed.
I

PRESENT PHYSICAL SITUATION

AND RANGE CONDITION
I have been studying your allotment for quite some time now—trying to determine the best way to improve your range and help you make the best possible income.

Some of the basic facts I have been working with are:

A. Present Situation:
1. 96 Sections
2. 10 Pastures
3. 9.6 sections average pasture size.
4. Stocking rate = 1500 A.U. ±
5. 15.6 A.U. per section average stocking rate.
6. Production — from 1,000-1,500 pounds per acre on some tobosa sites to less than 25 pounds per acre on hill sites in the south-east pasture of Lincoln County ranch.
7. Key forage species (gramas) composition less than half of normal.
8. Soil exposed, composition poor, volume of hill sites poor.

*Mr. Hill's report included for your study.

B. Requirements:
1. a. 1500 animal units X 1000# grass/month X 12 months,
 1500 X 1000 X 12 = 18,000,000 lbs. forage required annually.
 or b. 1000 animal units X 1000# grass/month X 12 months,
 1000 X 1000 X 12 = 12,000,000 lbs. forage required annually.
It requires approximately 1000 lbs. of forage per A.U./month to maintain an animal unit at a productive level and sustain a satisfactory range condition. Failure to appreciate this fact results in two serious consequences - poor production per animal unit and poor range condition. Invariably one can very accurately determine range condition, without visiting the range, if he knows the production per animal unit over a few years period (% crop, weaning weight) or by visiting the range he can predict relative production per A.U. Stocking rate must be based on forage production and range condition or poor production and range deterioration are inevitable. Examine the attached chart.

2. a. Above requires a per acre forage production of 293#/acre.

b. Above requires a per acre forage production of 195#/acre.

*Total production of your range cannot meet the requirement for 1500 animal units. It probably could provide for 1000 animal units if an intensive grazing system is employed where forced summer use of tobosa and other grasses were utilized. These grasses (tobosa, muhly and others) have sufficient T.D.N. (comparable to gramas) when immature to provide very satisfactory livestock production. However, if not used at this stage they have a grossly lower value than the gramas for use in the very critical periods of lactation and breeding - therefore, in the early years of your grazing system you will have to defer grama for the energy requirements of lactation and breeding.

C. Conclusion:

Stocking rate must be reduced and a grazing management system employed.
II

LIVESTOCK PERFORMANCE AND REQUIREMENTS
The following chart and overlay depicts the average situation we have to build a grazing system upon. Points are:

1. Temperature
 a. Mean minimum not prohibitive for calving at any time.
 b. Mean minimum sufficient for some growth or green-up in April and ample growth in May.

2. Precipitation
 Sufficient for significant growth in May, July, August, September, and October. June precipitation is historically not sufficient for much growth and we "burn up".

3. The effective precipitation-temperature relationship provides us with feed in excess of animal needs in May, July, August and September.

4. Blue Line - approximate base line for maintenance requirements of dry animal - sufficient feed except December through March.

5. Blue Shade - period of supplemental feed requirements to prepare for parturition and lactation. About 70% of calf fetus produced in last 45-60 days. At this time, we will need higher energy forage so during this period (November-December) we move to fresh pastures in order to try to maintain cow body weight, breed ewes, and insure a high starting level of lactation on the cows. Calf weights show about a 60% correlation to first 3-4 months milk production. Also, if cow weight drops too low or doesn't recover some in post-parturition period, she will probably not start estrus cycle in 60 days. (60 days average for healthy cow).
6. Red Line - a typical lactation curve.

7. Red Shade - designates relative drain lactation is having on cow. Supplemental feed and good pasture necessary here to maintain lactating cow in comparison to dry (blue line).

8. April 1 - breeding begins - need fresh pasture and good supplement. Repeated studies show we must put cow on gain here to get good estrus, ovulation and conception. Cows that calved in January and February have had 30-90 days and should be cycling here. Your success in getting cows bred early in this period, April-June, largely determines your production and profit for next year.

9. Green Line - approximate calf requirements over lactation. May will usually provide enough green to meet these needs, June often burns up, so calves still need supplement.

10. Green Shade - Calf requirements over lactation - however, the precipitation line is over this requirement line except in June so green feed will prove ample. If your breeding program has been successful you now have a 4-6 month old calf that can take full advantage of our short rainy season and gain at a maximum rate.

11. Precipitation Line (black) - when precipitation line is above blue line, red line, or green line and temperatures are above 40° your respective classes of livestock should be performing satisfactorily. The exception here is November - undoubtedly dry animal performance is satisfactory.

This chart shows relative nutritive quality of the range feed and probable average animal needs. I think it is important to fully realize that the
SUGGESTED GRAZING SYSTEM - USING 9 MAIN PASTURES

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GRAZE
GRAZING SYSTEM PROVISIONS

This suggested grazing system provides for:

1. Full use of coarse grasses - by forced grazing after summer rains have fallen. Present methods of yearlong grazing have severely depleted the composition of desirable grasses, forbs and browse, by allowing selective grazing by livestock. These coarse grasses will be utilized under this system and will provide satisfactory livestock production.

2. Maximum production (by deferment) of grama grasses, weeds and browse for use during the critical lactation and breeding seasons.

3. Sufficient duration and seasons of rest for desirable species to regain vigor and begin reestablishment.

4. Three main herds. Nine pastures are in system and one poor pasture, two small pastures and some traps are available for use as desired or needed.
GRAZING SYSTEM USE

1. Determine herd division - cattle might be separated into three classes:
 a. Yearlings to be bred, two year olds, unthrifty cows. These need special care, feed and attention. Your yearlings and your first calf cows will be the hardest to get bred and re-bred. The calves from these first calf cows should be weaned no later than September 1 to allow them to grow to normal size. The unthrifty cows might be sold August-September to relieve the range and take advantage of the pre-fall market. Your ewes needing the most care would be with these cows or perhaps your supers or yearlings would be with this priority herd.
 b. Good age cows (3-7's) and A Herd of ewes.
 c. Good age cows (3-7's) and B Herd of ewes.

2. Select summer use pastures.
 a. Summer of 1969, after rains, select three pastures for heavy use. These, if rainfall is adequate the first year, should be pastures that have a high percentage of tobosa. The grazing diagram is set up symmetrically for illustration purposes - but the pastures will actually be selected only after summer rain in 1969 has fallen. Livestock will be left in these pastures as long as they perform satisfactorily. Your A Herd will probably come out first to insure continued growth and condition prior to calving. Your B and C Herds as late as possible toward December. These good age cows
can loose more condition without effecting their lactation and re-breeding.

3. Select fall-winter pastures by need of each class of livestock and herd size: pasture forage. Leave in these pastures as long as livestock perform satisfactorily.

4. Use spring pastures - remember the dire need to put cows on gain for high, early conception rate. Move yearling and first calf heifers in one pasture as needed to maintain good condition. Move pairs from A and B herds to one fresh pasture and breed. Try to have the cows that have calved, with bulls, within 45 days after calving. Then work next calving pairs into fresh pasture and breed.

5. The grazing diagram shows abrupt pasture move dates. Obviously, these will vary depending on forage available in each pasture and calving and breeding needs. Summer use might begin from July 1 to August 15, fall-winter from October to December and Spring from February-April.

6. In the event of forage shortage (most likely in May and June) livestock will, of course, be spread out. Also, the summer use pastures can be used until spring if forage available and needed. However, every attempt should be made to give complete rainy season rest to six pastures even if it is only 45-60 days during poor years, and also spring growing plants should be rested in all six pastures, if only briefly during April or May favorable moisture conditions.
We have got to start the reestablishment of the better species. From the livestock standpoint every attempt should be made to have fresh pastures to begin lactation and to re-breed on - if we are going to obtain early crops.

6. Begin cycle again - hopefully you can select the winter use pastures of 1969 for summer use in 1970 - but the spring use pastures could be used. Every reasonable attempt should be made to rotate the season of use but this may be originally very difficult until a backlog of grama grass is built up. As we build up this backlog, this system should become more tenable each year.

The system proposed is only a suggestion - starting place - food for thought. Study it and then we will get together and devise one suitable to all.
ECONOMIC COMPARISON
1500 X .80 = 1200 breeders
 80% C. & L Crop
600 Saleable
$81.25 (.25 X 325#)
$73,000 Gross

1000 X .80 = 800 breeders
 90% C. & L. Crop
720 Saleable
$100 (.25 X 400#)
$72,000 Gross

*2. $10/animal unit feed and feeding cost.

*3. Shows only that effected by decapitalization or sale of 500 A.U.
at $100/each or $50,000 at 6% = $3,000.00.

*4. $15,000 feed cost at $10 A.U. X .075 interest = $1,125.00-
 $10,000 feed cost at $10 A.U. X .075 interest = $ 750.00

Your balance sheet would be effected in much the same manner. Granting,
the change of assets from livestock to land supposedly reduces your liquidity -
this is probably desirable in the ranching business. We would reasonably
expect land to appreciate - whereas livestock, in the event of severe
drought could depreciate rapidly and severely. I would expect lending
agencies to prefer land assets over livestock and therefore this plan should
improve your borrowing position.

I have no way of knowing how your income statement or balance sheet really
look. These are, of course, only estimates. I would suggest you thoroughly
run such statements and compare them. Crowding or over-crowding the pro-
ductive capacity of a ranch rarely, if ever, is profitable and is often
disastrous in the long run. Maintenance requirements are largely met by
livestock before production. Study again the U.S.D.A. chart enclosed,
especially the "feed consumed per pound of gain" column.
Other advantages are obvious. When you overcrowd the average productive capacity of rangeland then sub-average precipitation becomes a drought condition and production per animal unit is very poor. If you stock at a more reasonable number and defer or rotate the pastures - then precipitation considerably below average will still produce a reasonable amount of forage from vigorous plants. If properly stocked and managed, we should be able to operate economically at 2/3 of average precipitation. The enclosed Roswell precipitation chart will illustrate the need for such management.

The grazing system suggested here is only a preliminary suggestion. We would like to work out one with you to suit your needs and desires. However, it is my belief that you will need to reduce your livestock numbers at least for a few years. A reduction to 10 head/section from 15 head/section will still require intensive management. I believe that 90% calf crops and 400 pounds of production can be reasonably attained with such a reduction and intensive management and even better production is possible in the future.

Livestock prices are reasonably good, livestock numbers have risen rapidly, we have had one good and one excellent year out of the last two. We might reasonably expect a poorer precipitation year soon and lower livestock prices. I am not a weather or economic prophet but this would seem, based on probabilities, to be an appropriate time to reduce livestock numbers for decapitalization, weather and livestock market reasons.
ADDENDUM

I talked to an Internal Revenue Service Auditor in Albuquerque and there seems to be no provision for "income spreading" in the event of a forced sale or reduction even if requested by us.

Therefore, you would probably want to cull heavily this fall (about one-third of your reduction) and the same amount the next two years to "maintain your approximate net income position" while reducing your herd - i.e., a heavy cull of aged, unthrifty and unbred livestock this fall and the next two, should leave you with a herd of thrifty, good aged, highly fertile animals while at the same time (by increased sales of culls) provide a stable interim income while you are improving and reaching the 90% calf crop - 400 pound initial goal.

If there were some tax provision for spreading this extra income, then a large reduction this fall to the 1000 A.U. level would undoubtedly be desirable for you and the range. Under the circumstances this is not feasible and a three year reduction seems the logical recourse.
With stocking rates heavy too much forage is used for herd maintenance.

<table>
<thead>
<tr>
<th>Feed Consumed per lb. of Gain</th>
<th>Lbs. 21.4</th>
<th>Lbs. 28.0</th>
<th>Lbs. 36.0</th>
<th>Lbs. 40.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Calf Pounds Produced</td>
<td>21,920</td>
<td>21,924</td>
<td>320</td>
<td>360</td>
</tr>
<tr>
<td>Weight of Calf</td>
<td>9,940</td>
<td>9,744</td>
<td>320</td>
<td>360</td>
</tr>
<tr>
<td>Percent of Calf Crop</td>
<td>50%</td>
<td>50%</td>
<td>70%</td>
<td>90%</td>
</tr>
<tr>
<td>Daily Feed per Cow</td>
<td>16.6</td>
<td>18.7</td>
<td>21.0</td>
<td>21.0</td>
</tr>
<tr>
<td>Actual WT per Cow</td>
<td>650</td>
<td>750</td>
<td>1160</td>
<td>1160</td>
</tr>
<tr>
<td>Potential Normal WT per Cow</td>
<td>780</td>
<td>870</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>Feed Produced Yearly</td>
<td>600,000</td>
<td>600,000</td>
<td>600,000</td>
<td>600,000</td>
</tr>
<tr>
<td>No. of Cows</td>
<td>101</td>
<td>97</td>
<td>87</td>
<td>100</td>
</tr>
<tr>
<td>Unit Lot 1, Lot 3, Lot 5, Lot 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Effect of Reduced Rations on Production Rates
Table 27: Reproductive Performance of Mature Hereford Cows on Restricted Energy Prior to Calving

<table>
<thead>
<tr>
<th>LEVEL OF TDN</th>
<th>COWS PREGNANT</th>
<th>COWS NOT IN HEAT BY:</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEFORE CALVING</td>
<td>AFTER CALVING</td>
<td>1ST 20 DAYS</td>
</tr>
<tr>
<td>Low (4.5 lb.)</td>
<td>% Moderate (12.0 lb.)</td>
<td>14</td>
</tr>
<tr>
<td>Low (4.5 lb.)</td>
<td>Moderate (16.0 lb.)</td>
<td>14</td>
</tr>
<tr>
<td>Low (4.5 lb.)</td>
<td>High (25.0 lb.)</td>
<td>13</td>
</tr>
<tr>
<td>Low (4.5 lb.)</td>
<td>Low (8.0 lb.) — Moderate (16.0 lb.)</td>
<td>13</td>
</tr>
<tr>
<td>Low (4.5 lb.)</td>
<td>Low (8.0 lb.) — High (25.0 lb.)</td>
<td>15</td>
</tr>
</tbody>
</table>

Table 28: Reproductive Performance of Two-Year-old Cows on Different Levels of Energy

<table>
<thead>
<tr>
<th>LEVEL OF TDN</th>
<th>COWS PREGNANT</th>
<th>COWS NOT IN HEAT BY:</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEFORE CALVING</td>
<td>AFTER CALVING</td>
<td>1ST 20 DAYS</td>
</tr>
<tr>
<td>Moderate (8.0 lb.)</td>
<td>High (23.0 lb.)</td>
<td>42</td>
</tr>
<tr>
<td>Moderate (8.0 lb.)</td>
<td>Moderate (13.0 lb.)</td>
<td>37</td>
</tr>
<tr>
<td>Moderate (8.0 lb.)</td>
<td>Low (7.0 lb.)</td>
<td>42</td>
</tr>
<tr>
<td>Low (4.0 lb.)</td>
<td>High (23.0 lb.)</td>
<td>41</td>
</tr>
<tr>
<td>Low (4.0 lb.)</td>
<td>Moderate (13.0 lb.)</td>
<td>41</td>
</tr>
</tbody>
</table>

282

FACtORS AFFECTING Calf CROP

Table 110: Effect of Age of Calf and Calf Crop on Pounds of Calf Weaned Per Cow Bred

<table>
<thead>
<tr>
<th>PER CENT</th>
<th>1ST 20 DAYS</th>
<th>2ND 20 DAYS</th>
<th>3RD 20 DAYS</th>
<th>4TH 20 DAYS</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>450</td>
<td>412</td>
<td>274</td>
<td>336</td>
</tr>
<tr>
<td>90</td>
<td>405</td>
<td>371</td>
<td>337</td>
<td>302</td>
</tr>
<tr>
<td>80</td>
<td>360</td>
<td>339</td>
<td>299</td>
<td>256</td>
</tr>
<tr>
<td>70</td>
<td>315</td>
<td>298</td>
<td>263</td>
<td>235</td>
</tr>
<tr>
<td>60</td>
<td>270</td>
<td>247</td>
<td>224</td>
<td>202</td>
</tr>
</tbody>
</table>