areas in the bottom of Wood Canyon were seeded with grass, and bare ground under the quacking aspens in Wood and North Canyons received the same treatment. To make sure that no stray or unlicensed cattle would use the area, a system of marking permitted animals was devised.

Even the skeptics were pleased with the early results. 1966 marked the first full year in which the rest-rotation system was used, and even in that drier than normal year the results looked good. Native grass grew high and produced a good seed crop in the pastures being rested. Mature plants showed new vigor, and young plants began to fill in to protect the soil from erosion. Pastures being grazed alternately in spring and fall responded to the system by turning off cattle in good flesh at the end of the season.

It's too early to say that rest-rotation grazing is the answer to all management problems on the Pleasant View Unit, but range users and Bureau of Land Management specialists are hopeful that they are moving in the right direction. They foresee a watershed restored with vegetation capable of sustaining the multiple-use demands of range users and recreationists. Springs will reappear, and silt-free streams will flow in the valleys. The economy of the entire community will improve. These are the benefits to be gained from proper management of the public lands administered by the Bureau of Land Management. With continued support of range users and the community, the future for the Pleasant View Unit looks bright.
Picture a barren range of hills. The grass is thin, the shrubs are heavily browsed. Water from snowmelt and rainfall doesn't seep into the trampled ground, but flows in rivulets and then gullies toward the valleys carrying silt and debris. Many of the springs and watering holes have dried up from lack of groundwater. Cattle graze the hills from early spring to late fall, concentrating in draws where they compete with deer for feeding and resting places. Not many people visit this area. It's dry and bare and uninviting.

This was the Pleasant View Unit in 1964. Intensive farming in the Malad Valley since the 1850's had pushed the cattle farther and farther into the hills in search of forage. The increases in grazing pressure which built up during World War I and again during World War II did almost irreparable damage to already weakened forage reserves on the public lands.

But progressive range users and specialists with the Bureau of Land Management knew the Unit could recover with proper management. They pictured it with lush grass on the slopes, healthy shrubs protecting the draws and canyons, and plenty of flowing springs to provide water to cattle and deer. They knew that erosion scars would heal as vegetation was re-established, and the land would regain its former beauty. They saw a healthy watershed where livestock grazing, hunting and recreation could serve the interest of the people.

The time for action had come. It was 1964. A forage inventory showed that more than twice as many cattle as should be were grazing the hills. The solution was simple but drastic. Either reduce the number of cattle by one-half, or shorten the season for use. In either case, the prosperity of many people living in the Malad Valley would be struck a major blow. To some, it could be a disaster.

Range managers of the Burley District considered the alternatives which might help to soften the impact on the local economy. They called in research technicians from the Pacific Southwest Forest and Range Experiment Station for assistance. Together they devised a management plan which featured an entirely different system of grazing management. It was called "Rest-Rotation" grazing.

The proposed plan would divide the Unit into six large fenced pastures. Each pasture would be left ungrazed for two successive years in every six, and would then be grazed alternately in the spring and fall the other four years. To improve cattle distribution, water sources were to be developed. Seeding and brush removal was planned to improve forage on certain areas and to remove cattle from areas better suited for deer and sharp-tailed grouse. The number of cattle licensed to use the area and the season of use would not be changed. Instead, they were to be rotated to different pastures each year.

The proposed plan was presented to the Pleasant View Livestock Association in 1965. They agreed to give it a fair trial, and with their approval, Bureau of Land Management crews swung into action. They built 68 miles of fences in 1965 and 1966. Over-used
PLEASANT VIEW UNIT

1. Acreage
 Federal 59,946
 State 3,200
 Private 7,534
 70,680

2. Operators 84 in one association.

3. Qualification
 4,857 cattle - 18,338 AUM 90% FR

4. Actual use between 4,000 and 4,300 head.

5. Season of use - May 1 to August 31 with 10% until September 30.
Pleasant View

70,780 acres 20 x 12 miles
7,534 " private
3,200 " state

Elevation range 4,800 - 7,400 = 2,600
Up to 70% slopes

Precip. 14.2" 8.2 - 22.0 Nov. - Feb.

Season May 1 - August 31 80% 4 mos
 - Sept. 15 20%

82 permits - 4,844 AUs
Actual use - 4,280 "

9 to 304 head per permit

Stocking rate 4.2 acres/AU
Reduction survey basis 58%

550 acres sprayed, seeded Wood Canyon
Pleasant View Allotments

Area

<table>
<thead>
<tr>
<th>Category</th>
<th>Acres</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allotment total</td>
<td>70,780</td>
<td>100</td>
</tr>
<tr>
<td>PD</td>
<td>59,946</td>
<td>85.0</td>
</tr>
<tr>
<td>State</td>
<td>3,700</td>
<td>4.5</td>
</tr>
<tr>
<td>Private</td>
<td>7,534</td>
<td>10.5</td>
</tr>
</tbody>
</table>

Estimated unused because unwatered (1965) 11,000 15.5

Area of used range 59,780 (usable)

Area used under RR 39,813

Stocking licensed 5,150

Stocking (actual) 4,200 AUs (1965-73)

Season May 1-Aug 31 4 yrs

Total AUs 16,800

Stocking rate

Acres per AUM under RR (4 x 2.37 at present)

" " " entire range (4 x 1.2) 3.56 without

713 x 4 = 3,092 AUMs generated by water development making possible use of entire allotment area.
Number of days grazing generated by full water development

\[
\frac{3092}{4700} = 73.6\% \text{ of 1 month (30 days)} \quad = \quad 22 \text{ days}
\]

Acres used per year under ER with full water development

\[
70,780 \times 66.6 = 47,139
\]

Stocking rate with 4,700 AVS 4-month season

\[
\frac{47,139}{16,800 \text{ AVS}} = 2.80
\]
<table>
<thead>
<tr>
<th>Phenology</th>
<th>1968</th>
<th>Low observation</th>
<th>High observation</th>
<th>Spread (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kentucky blue</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>East aspect</td>
<td></td>
<td>June 30 - July 13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>West</td>
<td></td>
<td>July 2 - July 20</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bluebird wheat</td>
<td></td>
<td>July 13 - July 17</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>East</td>
<td></td>
<td>July 10 - July 24</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>West</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nevada blue</td>
<td></td>
<td>July 8 - July 1</td>
<td></td>
<td>-7</td>
</tr>
<tr>
<td>East</td>
<td></td>
<td>July 5 - July 5</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>West</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Pleasant View

<table>
<thead>
<tr>
<th>Year</th>
<th>Ave (45yrs)</th>
<th>Max</th>
<th>Min</th>
</tr>
</thead>
<tbody>
<tr>
<td>1965</td>
<td>14.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1966</td>
<td>14.4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1967</td>
<td>8.8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1968</td>
<td>17.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1969</td>
<td>17.9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1970</td>
<td>11.9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1971</td>
<td>15.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1972</td>
<td>20.1</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Precip</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>1924</td>
<td>9.8</td>
<td>1930</td>
</tr>
<tr>
<td>1928</td>
<td>9.7</td>
<td>1945</td>
</tr>
<tr>
<td>1935</td>
<td>8.1</td>
<td>1963</td>
</tr>
<tr>
<td>1966</td>
<td>8.8</td>
<td>-</td>
</tr>
</tbody>
</table>

Frost free 124 days ave
1966 130

1966 Dry Ave Temp Length frost free 6 days longer than ave.
Soil depth

- Slopes 30% + 20 inches ±
- Canyon bottoms 60 inches ±
- 5% slopes

Wildlife

- Chekar
- Hungarian partridge
- Sharp-tailed grouse
- Blue grouse
- Redhead goose
- Mournin dove

- Mule deer
 (Elk)

Season

- May 1 - August 31 80%
- Sept 1 - Sept 15 20%

Permittees 82

Licensed numbers 4844 (Grou)

Actual use 4280

Max 304 kg Min 9 Ave 58 (3)
Cow calf operation
Main calving Feb, Mar, April
1 bull 35 cows
Bulls onto to range June 1

First livestock (cattle) Malad Valley 1853

First settlement farming, livestock grazing 1863-64
1400 horses, some cattle

Cattle pop increased greatly 1850-1880 cattle sheep
Corlaw Valley migration route sheep John Novada & Utah

1900 21,000 sheep on Pleasant View Apt to June 1 Oct-Dec 15

Late 1880 Sagebrush a problem
Malod rancher - More pine grass under trees in early days than
in 1930
Reasons for decline range productivity

1935 Overgrazing April-October
Increase Canada Thistle Mustard

Abnormal drought 1930's

<table>
<thead>
<tr>
<th>Year</th>
<th>Precip.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1930</td>
<td>22.6</td>
</tr>
<tr>
<td>31</td>
<td>11.5</td>
</tr>
<tr>
<td>32</td>
<td>15.6</td>
</tr>
<tr>
<td>33</td>
<td>12.3</td>
</tr>
<tr>
<td>34</td>
<td>12.1</td>
</tr>
<tr>
<td>35</td>
<td>8.9</td>
</tr>
<tr>
<td>36</td>
<td>15.4</td>
</tr>
<tr>
<td>37</td>
<td>15.9</td>
</tr>
<tr>
<td>38</td>
<td>17.4</td>
</tr>
<tr>
<td>39</td>
<td>16.0</td>
</tr>
<tr>
<td>40</td>
<td>16.2</td>
</tr>
</tbody>
</table>

1916 Last large sheep business

Cattle
1930-35 Increase 45% Cattle
1936-40 Sheep decline heavy.
BLM jurisdiction 1934 Taylor Grazing Act.
Division of Grazing
1939 Grazing Service
1946 BLM through Consolidation Grazing Service and General Land Office.

Hyoscyamus niger

Bin Cynoglossum officinale
Hunts tongue

Bin. a Paeon. Verbascum Thapsus Mullerin
Annual Helianthus annuus
PLEASANT VIEW REST-ROTATION SYSTEM

The rest-rotation grazing system as used in the Pleasant View Unit embodies 4 main features.

1. The livestock use 1/3 of the area in the spring and 1/3 in the fall in any one year. The remaining 1/3 of the area is rested.

2. Each pasture goes ungrazed for two consecutive years in any six-year period. This interval allows the plants in the pasture to grow undisturbed for two years, produce two seed crops, and regain their vigor.

3. In two years of every six-year period a pasture is grazed in the fall allowing the plants to grow, produce seed, and store root reserves in the spring prior to grazing. This helps the plant to withstand spring grazing the following year.

4. A large concentration of livestock grazing for a short period of time will cover an area better and utilize it more uniformly than a small number for a longer time. Therefore, this system, which dictates that the livestock be turned out in two pastures for the spring grazing period and allowed to drift into two different pastures after the seed ripens in these pastures, should bring about more uniform utilization of the forage without excessive damage to the plants or the soil.

The system works as follows:

In 1968, cattle will be turned out in pastures I and V and will graze there for the entire spring period. After the seed ripens in these pastures, the gates to pastures II and VI will be opened allowing the cattle to drift in and graze there in the fall. Pastures III and IV will both be rested that year.

In 1969 the cattle will be turned out in pastures IV and VI and allowed to drift into I and V after the seed ripens, while pastures II and III will be rested.

The following diagram shows the system for two full six-year cycles. Each large block represents the whole unit for one year. The small blocks are individual pastures. Crosshatching on the left or right side represents spring or fall grazing, and rest periods are marked. 1967 was planned out of pattern in order to protect some seeding that was done in pastures I and VI in 1966.

To find the sequence for one pasture, find that pasture numeral on the left side of the large block and follow that same small block through six consecutive years.
B111 Idaho
Pleasant View Allotment

Grazing formula

Treatments

<table>
<thead>
<tr>
<th>A</th>
<th>May</th>
<th>June</th>
<th>July</th>
<th>Aug</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rest - seedlings

Rest - seedlings

Grazing

10,700 Acres
11,000 Nutgrass - Hvy

AVS

\[
\begin{align*}
116 & \quad \text{May 1 - Aug 31} \\
493 & \quad \text{Sept 1 - 30}
\end{align*}
\]

AVG

\[
\begin{align*}
4,936 & \quad \text{May 1 - Aug 31} \\
493 & \quad \text{Sept 1 - 30}
\end{align*}
\]

\[
\frac{5429}{400} \quad \text{May 1 - 31}
\]

\[20,637\]

Signed

July 24, 65
Pleasant View Pastures and Canyons

Pasture	Name
1 | North Canyon
2 | John Evans
3 | West Elk horn
4 | Morgan Jones Canyon
4a | Jensen Pass
4a | Jensen Pass Branch Canyon
4b | Sublette Canyon
5 | Sheep Creek
6 | Wood Canyon
July 14 1973

Pleasant View

Plan (present)

IIIa = Morgan Jones

IVa = Jensen Pass, Pol Branch

IVb = Skelet
July 14/77

Pleasant View

Plan (suggested)

Clockwise

Diagram showing areas labeled A, B, C, etc., with arrows indicating a clockwise direction.
Effective application of formula

<table>
<thead>
<tr>
<th>No</th>
<th>Name</th>
<th>Vigor</th>
<th>Reprod. est.</th>
<th>Litter</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>North Canyon</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>Evans</td>
<td>100</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>Elkhorn 4th Branch</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>Jensen Pass 4th Sublette</td>
<td>50</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>5</td>
<td>Sheep Creek</td>
<td>75</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>6</td>
<td>Wind Canyon</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

39 Morgan Jones

- Hounds tongue
- Hoellaria
- Sunflower
- Devil weed
- Cynoglossum officinale
- Verbascum thapsus
- Helianthus annuus
- Hypsycamus aiger
The Pleasant View Formula

Six Treatments

Reasons
1. 2 years of rest for scalding establishment
2. Short moves ease of handling the cattle.

<table>
<thead>
<tr>
<th>Schedule</th>
<th>Eltham</th>
<th>Sheep</th>
<th>Wood</th>
</tr>
</thead>
<tbody>
<tr>
<td>1966</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>67</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>68</td>
<td>E</td>
<td>F</td>
<td>A</td>
</tr>
<tr>
<td>69</td>
<td>D</td>
<td>E</td>
<td>F</td>
</tr>
<tr>
<td>70</td>
<td>E</td>
<td>F</td>
<td>A</td>
</tr>
<tr>
<td>71</td>
<td>F</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>72</td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
</tbody>
</table>

[Diagram of a rectangular area with letters A to E marked on the sides]
Range Conditions (1965-72)

<table>
<thead>
<tr>
<th>Year</th>
<th>Precip.</th>
<th>Char.</th>
<th>Range Prod.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1965</td>
<td>14.4</td>
<td>Dry</td>
<td>Fair</td>
</tr>
<tr>
<td>66</td>
<td>8.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>17.2</td>
<td></td>
<td>Ex</td>
</tr>
<tr>
<td>68</td>
<td>17.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>11.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>15.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>20.1</td>
<td></td>
<td>Ex</td>
</tr>
<tr>
<td>72 thru April</td>
<td>3.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1965-71</td>
<td>5.75</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Average 4 yrs: 14.2

Min: 1975 8.1

Max: 1960 22.0 1963 21.9
First visits

Pleasant View

June 8 11AM - 6:30PM
D. Fallon
Dean Bibles
Ray Peterson

Samaris
June 9 AM
Analysis Pleasant View
all four 3-5PM in
Barley

Jack Wilson
Dean Bibles
Ray Peterson
Don Swope
Bill McIlvain
Chris Vosker
Bob Brack

June 10 AM Continue P.V. analysis
1965

Jan 6 2 hrs. RR Director
 Stoddart and staff

Jan 4-5 Daylong sessions RR
 BLM-F.S. representatives
 Soil surveys
 Range trend
 Fulcher, Legbusa
 & others

1966 Nov. 3 AM First meeting
 with stockmen Malad
 P.V. allotment

Nov 3 PM Visited P.V. allot
 " " Running Downey RR
 to Marsh Valley
 " " to Marsh Valley

Nov 4 Visited Marsh Valley
 8-13 Am Allot.
PLEASANT VIEW REST-ROTATION SYSTEM

The rest-rotation grazing system as used in the Pleasant View Unit embodies 4 main features.

1. The livestock use 1/3 of the area in the spring and 1/3 in the fall in any one year. The remaining 1/3 of the area is rested.

2. Each pasture goes ungrazed for two consecutive years in any six-year period. This interval allows the plants in the pasture to grow undisturbed for two years, produce two seed crops, and regain their vigor.

3. In two years of every six-year period a pasture is grazed in the fall allowing the plants to grow, produce seed, and store root reserves in the spring prior to grazing. This helps the plant to withstand spring grazing the following year.

4. A large concentration of livestock grazing for a short period of time will cover an area better and utilize it more uniformly than a small number for a longer time. Therefore, this system which dictates that the livestock be turned out in two pastures for the spring grazing period and allowed to drift into two different pastures after the seed ripens in these pastures, should bring about more uniform utilization of the forage without excessive damage to the plants or the soil.

The system works as follows:

In 1973, cattle will be turned out in Pastures II and VI and will graze there for the entire spring period. After the seed ripens in these pastures the gates to Pastures I and III will be opened, allowing the cattle to drift in and graze there in the fall. Pastures IV and V will both be rested that year.

In 1974, the cattle will be turned out in Pastures I and V and allowed to drift into II and VI after the seed ripens, while Pastures III and IV will be rested.

The following diagram shows the system for two full six-year cycles. Each large block represents the whole unit for one year. The small blocks are individual pastures. Crosshatching on the left or right side represents spring or fall grazing and rest periods are marked. 1967 was planned out of pattern in order to protect some seeding that was done in Pastures I and VI in 1966.

To find the sequence for one pasture, find that pasture numeral on the left side of the large block and follow that same small block through six consecutive years.
Grazing Schedule

Pleasant View Unit

<table>
<thead>
<tr>
<th>Year</th>
<th>1966</th>
<th>1967</th>
<th>1968</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td></td>
<td>REST</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td></td>
<td></td>
<td>REST</td>
</tr>
<tr>
<td>IV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>REST</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VI</td>
<td>REST</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>1969</th>
<th>1970</th>
<th>1971</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td></td>
<td>REST</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>REST</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>REST</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VI</td>
<td></td>
<td></td>
<td>REST</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>1972</th>
<th>1973</th>
<th>1974</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td></td>
<td></td>
<td>REST</td>
</tr>
<tr>
<td>IV</td>
<td>REST</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>REST</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VI</td>
<td>REST</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>1975</th>
<th>1976</th>
<th>1977</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td></td>
<td>REST</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>REST</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>REST</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VI</td>
<td></td>
<td></td>
<td>REST</td>
</tr>
</tbody>
</table>
Understory Seeding Aspen Stands

Date: About 1967

Pleasant View Unit Resource Analysis

This analysis was begun primarily to determine possible land treatment practices and range improvements and to map existing treatments and improvements in the Pleasant View Administrative Unit. The topography of this unit is quite rugged with elevations ranging from 5000 feet to 7700 feet. The vegetation complex varies from sagebrush-grass types to Douglas fir climax associations. This unit has recently been made into a 6-pasture, rest-rotation, grazing system and contains roughly 70,000 acres.

Three main types of land treatments were considered as possibilities on the area: (1) aerial seedings (by helicopter) into aspen patches where the understory had been depleted, (2) sagebrush spraying and seeding with chaining used to bury the seed and reduce cheatgrass competition, and (3) sagebrush spraying with no seeding where there is an existing perennial-grass understory.

At the same time as this information was gathered, various existing range improvements were mapped and locations for future range improvements were considered. Existing roads, pipelines, spring developments, troughs, and cultural practices were mapped, and possibilities for future improvements were discussed.

The possibility of seeding certain aspen patches or the lack of this possibility was the most difficult evaluation to make, and although several factors influenced the actual decision as to the suitability of each patch, the two major criteria were (1) the size of the aspen patch (must be at least 10 acres for consideration), and (2) the presence or lack of understory vegetation in the aspen patch. In cases where a particular aspen patch was marginal, either in size or understory vegetation, then other factors were used to help in making a decision. Some of these were (1) availability for cattle use, (2) size of a patch in relation to its distance from other suitable aspen patches, and (3) possibility of erosion of an area if it was not seeded. A more detailed discussion of the aspen patches in each pasture will be taken up later in this paper.

The seeding sites chosen for a spray-seed-chain type of treatment also had criteria by which they were chosen, although in most cases, the choice of these sites was more straight-forward than the choice of aspen seeding sites. Since this type of treatment is quite expensive only high-risk or high-potential areas were chosen, namely the large, flat canyon bottoms where the cattle have always congregated. These areas are very badly depleted by past cattle use and as such require
seeding to begin the return to a state of high production. The main factor to consider was simply if the area selected is large enough to justify the cost.

Brush spraying was recommended only where a suitable understory of perennial grasses is still present and where there is no danger of rabbitbrush (*Chrysothamnus viscidiflorus*) invasion into the sprayed area. Degree of slope and possible wildlife use were also factors of high importance in the determination of possible areas.

Other range improvement practices and cultural practices were recommended where it was felt they were necessary and will be included in the discussion of individual pastures to follow. The unit resource analysis done this year by myself includes only pastures III, IV, and V as pasture VI was completed previously, and time did not permit completion of pasture I.

Pasture III

West Elkhorn Canyon:

West Elkhorn canyon contains most of the good aspen seeding sites in pasture III. Approximately acres of the acres of aspen deemed suitable for seeding in pasture III is found in the head of this canyon. The sites chosen here and in neighboring Point Canyon constitute all of the high-priority seeding sites in pasture III.

The aspen sites chosen for seeding have a relatively bare understory, with small annuals constituting the major portion of the vegetation there. These small annuals, the most common of which are *Veronica* sp, *Polygonum* sp and Hound's tongue (*Cynoglossum* sp), should offer little competition to the establishment of seeded grasses. Some perennial disturbance indicators are also occasionally present, the best example being mullein (*Verbascum thapsis*). Other desirable, perennial species were often also present, but if a site was chosen for seeding their density was very low. Some of the more common forbs were wild strawberry (*Fragaria* spp.), *Osmorhiza* purpurea, heartleaf arnica (*Arnica cordifolia*), and lupine (*Lupinus* sp.). The most common grass, almost the only grass in the depleted stands chosen for seeding, is pinegrass (*Calamagrostis rubescens*), occurring there in small, isolated patches.

The stands chosen for seeding also have a low brush density, although in many of the stands some brush is present. The most common brush species occurring in the stands are chokecherry (*Prunus virginiana*), serviceberry (*Amelanchier alnifolia*), mountain myrtle (*Pachistima myrsinitas*), and willow (*Salix* spp.).

Aspen stands with relatively high densities of Douglas fir (*Pseudotsuga*
were not considered for seeding as it was assumed that the
seeded grasses would not be ecologically adapted to the acidic soil
under the fir duff. Thus, in all pastures Douglas fir patches were
not considered as possible seeding sites.

The stands deemed suitable for seeding all are near the head of West
Elkhorn Canyon as aspen does not grow down nearer the mouth of the canyon
in appreciable quantities. However, from the private land in the mouth
of the canyon extending upward nearly to the lower watering trough on
the Sheep Creek pipeline is a site suitable for a spray-chain-seed type
of treatment. The canyon bottom is wide enough and has been depleted
badly by past grazing pressure until sagebrush invasion of the bottom
has taken place and most of the perennial grass and forb species have
been removed. Sagebrush (Artemisia tridentata) is the major brush
species present and the common understory species include cheatgrass
(Bromus tectorum), hound’s tongue (Cynoglossum sp), Veronica sp,
Polygonum sp, hembome (Mimulus floribundus), mullein (Verbascum thapsis),
and occasionally Kentucky bluegrass (Poa pratensis).

Point Canyon:

Several good aspen seeding sites were selected in the head of Point
Canyon although they barely meet the minimum size requirements in most
cases for aspen seeding. The understory vegetation in the aspen patches
there is almost identical with that described in West Elkhorn Canyon
and the aspen patches were selected and rejected in the same manner,
so no further space will be devoted to them here.

In the mouth of this canyon as in West Elkhorn Canyon, there is a good
site for a spray-seed-chain treatment. The understory here is equivalent
to that in West Elkhorn and the site was chosen for the same reasons.

Also it is recommended to complete a simple road from the head of Point
Canyon down to the road in the bottom of Morgan-Jones Canyon. The
distance would be approximately one-half mile, and could be completed
relatively easily with a bulldozer. This road would give much better
access between these two canyons and allow travel back and forth without
driving to the bottom of one and back to the top of the other.

Morgan Jones Canyon:

There is very little recommendation for aspen seeding sites in Morgan-
Jones Canyon even though there is considerable aspen growing there.
Since there is so much aspen that has little or no seeding value, perhaps
some space should be devoted to describing why this is the case there.

There are three distinct types of aspen patches in Morgan-Jones Canyon,
the first type being along the road in the bottom of the main canyon
in the area of heaviest cattle concentration. There the aspen patches are somewhat depleted adjacent to the road, but even there have considerable understory of perennial forbs and brush of the same type as described in West Elkhorn Canyon. Following a line from the bottom of the canyon toward the top, the understory gradually closes up the spaces and soon loses all usefulness for aspen seeding. Thus the size of the remaining aspen seeding site is too small to be considered as a possibility.

The second type of aspen patch there, and the type with the widest distribution has a dense understory of nineback (*Physocarpus malvaceus*). In stands of this kind the brush understory is so dense that even walking through it is extremely difficult, and offers little hope of successful aerial seeding.

The third type of aspen patch described here is perhaps an upper extension of the first described. This type is in quite good condition, with a rich understory of grasses and forbs found typically under aspen stands in good condition. The forbs are the same species as those listed previously in other stands, but here are much more vigorous and in higher density than in the depleted stands described. There are several species of grasses present also in the understory, the most common being slender wheatgrass (*Agropyron trachycaulum*), *A. subsecundum*, and Columbia needlegrass (*Stipa columbiana*) and occasionally *Hesperochloa kingii* and pinegrass (*Calamagrostis rubescens*).

For these reasons, then, little aspen in the canyon has been recommended for seeding. However, it is recommended that the main canyon bottom receive a spray-seed-chain treatment from the mouth to where the canyon narrows too much for spraying to be feasible. The understory in the bottom of the canyon is quite similar to that in the two canyons previously described.

Pasture IV *Jensen Past*

There was no aspen seeding recommended in this pasture, as there is very little aspen there, and what is there occurs in patches too small to be considered for aerial seeding.

It is recommended, however, that both Sublette Canyon and Wide Hollow be sprayed to kill sagebrush and that the bottoms be chained and seeded to provide forage for livestock and watershed protection. It is not recommended to spray more than is to be reseeded, for the walls of these canyons have little perennial grass understory and high rabbitbrush (*Chrysothamnus viscidiflorus*) density, and it appears that if the sagebrush is killed the rabbitbrush will increase and take over dominance in the community. Conditions would then be worse than previously with the sagebrush.
Pasture V Sheep Creek

There are several, small aspen patches in the head of Sublette Canyon which are good aspen seeding sites, being highly depleted, with almost no understory, but they do not reach 10 acres in size. They are adjacent to the main road running through the canyon, however, and perhaps should be seeded simply to better the appearance of the roadside area. It is recommended that the bottom of the canyon be sprayed, seeded, and chained, so perhaps these small patches could be seeded at the same time, to improve the appearance of the area.

There is also a good aspen seeding site in Sheep Creek Canyon along the road which leads up into Wood Canyon. This is a prime seeding area, however, it is quite a distance from any other seeding area, and perhaps in not quite so desirable from that standpoint.

In Sheep Creek, also, it is recommended that the large basin in the canyon be sprayed to eliminate sagebrush. The area has a good stand of perennial grass and would probably benefit greatly from the release of competition with the sagebrush. Much of this basin is state and private land, however, if it is acquired by the B. L. M. it should be considered. Besides eliminating the sagebrush competition the spraying would also kill the mule ears (Wyethia amplexicaulis) and the little sunflower (Helianthella uniflora) that is widespread throughout the area. Wildlife use on the area should be considered, also, before a final decision is made regarding its suitability as a spraying site.

There are also several springs, as yet undeveloped in this pasture which could perhaps be used to supply some livestock and wildlife water at some future time.
PLEASANTVIEW ALLOTMENT EVALUATION (Summary)

The allotment has completed a grazing cycle under the revised 3-pasture grazing system. The allotment currently has a Class I obligation of 18,018 AUM's on 59,946 acres of NRL. This averages out to 3.3 acres/AUM to satisfy the total Class I demand. For the past three years the average actual use has been 15,303 AUM's. This averages out to 3.9 acres/AUM.

A composite picture of the trend data from 1970 through 1975 indicates a nearly static situation. Each field must be analyzed separately; however, there are certain aspects and conditions that pertain to the allotment as a whole. The purpose of this summary is to tie these aspects together.

The Pleasantview AMP needs to have a major revision to bring it up to standards required of the new AMP's that are being prepared for the pending EIS effort. The objectives need to be specific and practical. Many of the objectives, as they now exist, are vague and impossible to measure and/or attain. The key species should include Poa pratensis as well as Poa nevadensis.

One of the major problems in the allotment is the poor balance between the early treatment and the seed ripe treatment. The adjudicated season of use is 5/1 through 8/31; however, the livestock have not turned out prior to 5/10 for the last three years. Seed ripe for bluebunch wheatgrass varies from 7/20 to 8/1. If the livestock remain in the spring field until seed ripe, the field has to absorb nearly 3/4 of the total use in the allotment. The early treatment simply does not have that type of capacity. With such a heavy obligation, the early fields would be subjected to severe utilization each year if the livestock did not move prior to seed ripe.

The evident lack of seedling establishment of key species throughout the allotment is a serious problem. There has been a marked increase of several of the shrubby plants. Perhaps the most evident plant problem is the rapid buildup of hound's tongue (Cynoglossum officinale) that has spread throughout the entire allotment. This plant is a definite invader and a sure sign of overuse. It is especially prevalent in the various canyon bottoms. The seeds from this plant are transported easily by the livestock and they cause serious eye problems for the livestock later in the summer.

The allotment has shown improvement since the implementation of the rest-rotation system. This is not readily evident since 1970; however, a comparison of condition and trend photostaken in 1965 with those taken in 1975 shows an overall improvement. Granted, this is a subjective analysis because solid reliable data is lacking for the late 1960's. Perhaps one of the more noticeable improvements has been the increase in aspen regeneration throughout the allotment.

Management recommendations follow:

1. Establish a season of use from 6/1 through 9/30. This item is crucial to the improvement of the allotment. This will balance the use between the early and seed ripe treatment. The cattle will not severely utilize the early field and there will exist an improved opportunity for effective seed trampling.
The only alternative to this recommendation is a very substantial reduction. In fact, if after one complete cycle under this adjusted season of use, there still is little if any improvement, the reduction will still be necessary.

2. The livestock should be moved into the seed ripe field in a short time period. This movement could be aided by turning the water off in the early field.

3. The livestock should be prevented from trailing to the Malad River for water. This action would alleviate the grazing pressure on the lower reaches of the allotment in the canyon bottoms.

4. Fund a study to determine the viability of the seeds produced by the key species. This is critical to the success of the system to have seedling establishment. We need to have seedling establishment. We need to know if viable seed is being produced and if not, why not.

5. Continue with intensive use supervision. This involves tagging the livestock and continuing to follow an aggressive trespass program.

6. Insure that fences are maintained prior to spring turnout. This can be accomplished if the turnout date is set back to 6/1. One significant reason for the lack of improvement in the allotment has been the poor compliance with the grazing system in the past. Note: In 1975 there was excellent compliance with the system.

7. Read all condition and trend plots in 1976 and then once every three years thereafter. The personnel who gather the data should be carefully trained to reduce this variability in reading the plots to a minimum.

Kurt J. Kotter
Natural Resource Specialist
<table>
<thead>
<tr>
<th>PRODUCTION</th>
<th>RANGE SUITABILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Current</td>
<td>AUMs</td>
</tr>
<tr>
<td>Potential</td>
<td>AUMs</td>
</tr>
</tbody>
</table>

NARRATIVE

Brief concise evaluation, alternative possibilities for improvement, recommendations for management changes, etc. *(Attach additional sheets, if necessary)*

From 1970 thru 1972 this pasture showed an improving trend index. No data was gathered in 1973; however, the data collected in 1974 and 1975 shows a downward trend. This downward trend corresponds with the change from a 6 pasture to a 3 pasture rest rotation system. Litter accumulation has shown a steady increase from 1970 thru 1975. No seedling establishment has been detected. In spite of a decline in actual use, utilization has been extremely high in this field for the last two years. Temperature and precipitation have been at or below average for the last two years. This could also have an effect on the declining trend evident for the last two years.

Compliance with the grazing system was excellent for the 1975 grazing season.

Management recommendations for this pasture are as follows:

1. Adjust the season of use for the allotment to 6/1 thru 9/30. This will enable the heavy use field to produce sufficient forage prior to 6/1 to withstand the heavy livestock obligation. This adjustment will also balance the use between the early treatment and the seed ripe treatment and will increase seedling production. The later entry date will allow for more timely fence maintenance throughout the allotment.

2. A permanent condition and trend study plot should be located in that portion of this field that is south of Highway 37 in Ireland Canyon. This will provide a more complete picture of the entire pasture.

3. Movement into the seed ripe field should be completed in a short time. This will provide for more realistic actual use data.

4. Water distribution in this field is fairly good; however, an extension should be placed on the Mansfield Canyon line to reach an area between Ireland Canyon and North Canyon that currently is underutilized.
<table>
<thead>
<tr>
<th>PRODUCTION</th>
<th>RANGE SUITABILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PERCENT</td>
</tr>
<tr>
<td>Current</td>
<td>AUMs</td>
</tr>
<tr>
<td>Potential</td>
<td>AUMs</td>
</tr>
<tr>
<td></td>
<td>SUITABLE</td>
</tr>
</tbody>
</table>

NARRATIVE

Brief concise evaluation, alternative possibilities for improvement, recommendations for management changes, etc. (Attach additional sheets, if necessary)

The John Evans field shows a slow decline in the trend index since 1970. This decline has increased during the last year. Litter accumulation has shown a decrease in most areas. One trend plot does show increased litter accumulation. This is primarily attributed to a significant increase in big sagebrush. The key species composition and cover of live vegetation has also shown a decline over most of the field.

It should be noted that temperature has been below normal for the last two years. This condition, coupled with subnormal precipitation would reduce the forage production.

This field was rested in 1974; however, there was a great deal of trespass in 1974 as evidenced by the 29% utilization. Grasshopper infestation also had quite an impact on the forage resource in John Evans Canyon in 1974. The heavy livestock obligation this year coupled with the poor rest treatment in 1974 have combined to accelerate the downward trend.

Water distribution in this field is adequate.

Management recommendations follow:

1. Establish season of use from 6/1 thru 9/30 for the entire allotment. This will enable the heavy use field to produce sufficient forage prior to 6/1 to withstand the heavy livestock obligation. This season of use adjustment would also balance the use between the early treatment and the seed ripe treatment, and it should enhance seedling production. Seedling production has been almost entirely non-existent throughout the entire allotment. The later turnout date will allow for more timely fence maintenance throughout the allotment.

2. The condition and trend study plot located near Stump Reservoir should be abandoned because it is too near water and it also is located near the division fence between the North Canyon field and the John Evans field.

3. Movement into the seed ripe field should be completed in a short time. This will provide for more realistic actual use data.
ALLOTMENT EVALUATION SUMMARY

Allotment: Centrevue (III)
Type of Management: R. R.

MORGAN JONES - WEST ELKHORN

TREND INDEX

100 120 140 160 180

970 71 72 73 74 75

ACTUAL USE (AUMs)

0 100 200 300 400 500

1970 71 72 73 74 75

LEGEND: WILDLIFE — LIVESTOCK

UTILIZATION (percent)

0 10 20 30 40 50 60 70 80 90 100

1970 71 72 73 74 75

LEGEND: ACTUAL — ALLOWABLE

TEMPERATURE (°F)

52 53 54 55 56 57 58 59 60 61

1970 71 72 73 74 75

LEGEND: ACTUAL — NORMAL

PRECIPITATION (inches)

0 2 4 6 8 10 12 14 16 18

1970 71 72 73 74 75

LEGEND: ACTUAL — NORMAL

March thru Sept.

March thru Sept.
<table>
<thead>
<tr>
<th>PRODUCTION</th>
<th>RANGE SUITABILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current</td>
<td>AUMs</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Potential</td>
<td>AUMs</td>
</tr>
</tbody>
</table>

NARRATIVE

Brief concise evaluation, alternative possibilities for improvement, recommendations for management changes, etc. *(Attach additional sheets, if necessary)*

The West Elkhorn - Morgan Jones field shows much the same trend as the John Evans field. There has been a fairly static trend from 1970 thru 1974, and the trend has increased it's downward trend this past year. I feel this accelerated downward trend can largely be attributed to poor compliance with the grazing system in 1974. This is evidenced by the 55% utilization that was measured in the rest treatment in 1974. The below average temperature and precipitation also tend to reinforce the downward trend. The extremely high utilization in this field in 1975 had an adverse effect on live vegetation cover.

New water lines were installed down Point Canyon and Rocky Point late in the grazing season in 1975. The improved water distribution will spread the heavy obligation out in the future and the extremely high utilization figures should be reduced.

This field receives the same treatment as the John Evans field, and they reflect much the same picture.

Management recommendations follow:

1. Establish season of use from 6/1 thru 9/30. (The rationale for this has been developed in the narrative for fields I and II.)

2. Condition and trend plot PV III-17 in West Elkhorn Canyon should be reestablished in the canyon bottom. One of the stakes on the original plot had been destroyed prior to 1970.

3. Movement to the seed ripe field should be completed in a short time. This will insure more accurate actual use data.
PRODUCTION | RANGE SUITABILITY
--- | --- | --- |
Current | AUMs | PERCENT
| | | SUITABLE | POTENTIALLY SUITABLE | UNSUITABLE
Potential | AUMs | |

NARRATIVE

Brief concise evaluation, alternative possibilities for improvement, recommendations for management changes, etc. *(Attach additional sheets, if necessary)*

The Sublett-Jensen Pass field has shown an upward trend since 1971. This is in contrast to the other three fields that are located on the eastern side of the Pleasantview Allotment. There is a direct correlation between a reduction in actual use and a reduced percent utilization. Litter accumulation has generally shown an increase throughout the years, however, key species composition has shown a consistent reduction. The ground cover of live vegetation shows much the same as the litter accumulation.

Utilization varies widely in this field. This is largely due to the poor water distribution. A new line has been installed in Wide Hollow and proposed feeder lines from that mainline will provide much better livestock distribution which will result in a more reasonable, uniform percent utilization throughout the field.

Management recommendations:

1. Establish season of use from 6/1 thru 9/30 for the entire allotment. *(The rationale for this has been developed in the narrative for fields I and II.)*

2. Movement to the seed ripe field should be completed in a short time. This will insure more accurate actual use data.

3. Feeder line installation on the Wide Hollow water system is imperative for continued improvement in this field.
The Sheep Creek field follows much the same trend as the Sublett-Jensen Pass field. Although the trend is on the upswing, there has not been a corresponding increase in the percent composition of key species. In fact, the key species have steadily decreased since 1970. This apparent contradiction is explained as follows: Browse plants and forbs, such as big sagebrush, rabbitbrush, bastard toad flax, snowberry, wild Buckwheat, and hound's tongue have shown an increase while the key species have either held their own or decreased slightly. Litter accumulation has shown a tremendous increase since 1971. Seedling establishment of key species is very low.

This field has good water distribution, and utilization is fairly uniform throughout. Aspen regeneration is quite evident in this field and further supports the upward trend.

Management recommendations:

1. Same as for other fields with regards to the change in season of use and movement to the seed ripe field.
Brief concise evaluation, alternative possibilities for improvement, recommendations for management changes, etc.
(Attach additional sheets, if necessary)

The Wood Canyon field follows much the same trend as the Sheep Creek field; however, there is a decline evident this last year. This decline is largely the result of a tremendous increase in hound's tongue from 1974 to 1975 in the trend plot near the Wood Canyon Spring. An increase in other browse species has also tended to reinforce the declining trend. Again, reproduction of key species is nonexistent.

Water distribution in this field is adequate at this time.

A return to normal temperature and precipitation will probably do much to reverse the downward trend evident this past year.

Management recommendations:

1. The trend plot near Wood Canyon Spring should be abandoned (PV-VI-2), and a new plot should be established under aspen in the south fork of Wood Canyon.

2. The season of use should be adjusted as previously mentioned.

3. Movement to the seed ripe field should be completed in a short time span, i.e. they should be moved and not allowed to drift into the seed ripe field.
Tour of Pleasantview and Curlew Allotments
Jens Jensen - Range Specialist
September 14, 15 & 16, 1976

Pleasantview Allotment

Problems and Observations

1. There appears to be an improvement in grass cover (Poa pratensis) along the drainage bottoms. However, the dominant vegetation in some areas is still annual weeds.

2. No reproduction of desirable perennial grasses in the areas used by livestock.

✓ 3. Some aspen stands are still almost completely devoid of understory vegetation although there is some aspen reproduction.

4. The most predominant grass is Poa pratensis which is not the most desirable grass from a livestock production standpoint.

5. Utilization, on the usable forage (grasses, forbs and some shrubs) in the areas visited in both the early use and seed ripe pastures was estimated to be over 95%.

6. More livestock were actually observed in the early use pasture than in the seed ripe pasture. This may have been due to Hormay's comment when he visited the allotment in June 1976 that the livestock did not need to be driven from the early use pasture as they would leave when they run out of feed.

7. Livestock have been kept out of the use pasture adequately this year.

8. Deer and grouse were observed in the rested area on the extreme southern end of the allotment (south of the road). None observed in other pastures.

9. Cattle appear to have used the northern exposures heavier than the southern exposures. Cheatgrass appears on some southern exposures.

One or more of the following alternatives should be considered in an attempt to alleviate some of the problems of heavy grazing in the allotment.

✓ 1. Delay the spring turn out date to June 1. This will equalize the use between the early use pasture and the seed ripe pasture.

2. Maintain present turn out date but determine the maximum amount of utilization that would be allowed in key areas. After this amount of use was made, the operators would be required to remove their livestock from the allotment until seed ripe.
3. Identify the areas suitable for livestock grazing and adjust livestock numbers to the grazing capacity of these areas.

Recommendations

Alternative one appears to be the most feasible at this time. The operators have, for the last couple of years at least, held their livestock off until mid May. They have either fed hay or developed early spring forage.

Alternative two does not appear practical because of the expense and effort it would take to gather and remove the livestock from the allotment. Also the operators would have no place to put their livestock during July and removal of the livestock would cause excessive weight loss.

Alternative three would be feasible except we would still have the problem of three-fourths of the use being made before seed ripe.

It may be necessary to make adjustments in livestock numbers at a later date, but for the present adjustment in the turn out date appears least disruptive to the livestock operators.

Curlew Allotment

The portion of the Curlew Allotment toured appeared to be in good or high fair condition. If further condition and trend studies indicate this is the case, then the AMP and grazing schedule developed should be similar to that presently being followed, unless the MFP should dictate otherwise because of the needs of other resources.

I would also recommend that actual development of AMP's be postponed until after the MFP has been updated, amended, or revised as the MFP will provide guidance needed for development of the AMP.
To: Director, DSC
From: John Baker & Merrill DeSpain
Subject: Field Trip Report

Covering Travel To:
Pleasant View Allotment, Roy Arbon Unit and
Curlew Valley Unit, Burley District, Idaho
September 14-16, 1976

PLEASE number paragraphs in accordance with subjects listed below; if one or more items
is not applicable, so state.

1. Purpose/Objectives of Trip
2. Persons Contacted/Interviewed
3. Subjects Discussed
4. Facts Gathered
5. Other Observations Made
6. Accomplishments or Results of the Trip

2. People Contacted or Consulted:
Nick J. Cozackos, District Manager, Burley, David Vail, Area Manager, Bannock-Onieda Resource Area, Jens Jensen, Range Management Specialist, Idaho State Office.

1. Purpose of Travel:
By memo of July 22, 1976, the Burley District Manager requested Service Center assistance with respect to problems in the Pleasant View Allotment and AMP development in the Roy-Arbon Unit. The trip was arranged as a result of this memo. In addition, we also looked at part of the Curlew Area.

3-6. Findings:
1) Roy-Arbon Unit. After arriving in the Bannock-Onieda Resource Area on September 14, we drove through part of this unit. We found the majority of the area we saw to be in reasonably good condition. Area Manager Vail explained that no AMP currently exists on this area, but said that most of the unit was in good condition.

2) Pleasant View Allotment. After looking at the Roy-Arbon unit we spent the balance of the September 14 and most of September 15 looking at the Pleasant View Allotment. This is a very complex allotment with wide variations in elevations, slope and aspect. Much work has been done on the Allotment and much discussion and planning has taken place. Attached is a brief summary of the Allotment status prepared by Burley District people.

Although trend studies and observation by District personnel indicate improvement from conditions existing when the grazing system was implemented, District people are not satisfied with the rate of improvement and are considering changing the grazing season from May 1 through August 30 to June 1 through September 30 to allow forage plants to become better established before grazing begins each year.

We found the majority of accessible or suitable range within the grazed pastures to be grazed very heavily. This includes pasures grazed early as well as those deferred until seed ripe. Utilization of these areas was in excess of 90% by our visual observation. Utilization of the Sublette Canyon Reservoir area was extremely heavy.
Some of the rested pastures (about 1/3 of the total area) looked fairly good, while the more accessible areas of North Canyon in pasture I (a rest pasture) was heavily grazed by trespass cattle.

3) Curlew Area. On September 15 we spent about two hours driving through the Curlew area. This area consists of several pastures containing rather large acreages of Crested wheatgrass seedings. AMPs have not yet been written, but the Area Manager annually develops operational plans for the use of these pastures which provides for deferment and rest from grazing use. In general range condition for the areas we saw was good.

Recommendations

1) Roy-Arbon. On the basis of our observations it appears that current management practices are providing for the physiological requirements for growth and maintenance of vegetative types to maintain a desirable vegetative composition. If such conditions exist throughout the Unit, we suggest that AMPs for the Unit could be developed by documenting existing herd management practices for both cattle and sheep which graze the Unit.

2) Pleasant View. It appears that the main problem on this allotment may be that it is overstocked. We recommend that the following recommendations be initiated and some short term objectives for improvement be established. If at the end of this short term (e.g. one grazing cycle) the results are not satisfactory, the authorized grazing should be reduced to capacity. This stocking capacity should include consideration of suitability for livestock grazing based on steepness of slope and distance from water.

1. We agree with District people that the grazing season be changed from May 1 through August 30 to June 1, through September 30. This should be considered as a minimal adjustment.

2. Salt should be placed out of the bottoms. This should help in better distribution of livestock and some beating out the non-productive bottom lands.

3. Cattle should be removed from the early use pastures and placed entirely in the seed ripe pastures. We noticed quite a number still in the early use pastures resulting in heavy utilization. The cattle prefer to stay in the early use pastures to graze the tender regrowth rather than move on their own. Due to the fact these early use pastures will receive the seed ripe grazing treatment the following year they should be allowed to recover as much as possible following the early use.
4. The range riders should move cattle out of the heavily utilized canyon bottoms into areas where there is currently light use. It appears that a full time rider is justified on this allotment, not only to move livestock out of the bottoms to higher utilized areas, but to assure that livestock are kept off the rest pastures. The full benefits of the rest treatment cannot be realized until this use is controlled. The heavy utilization observed in Sublette reservoir area in pasture V should be avoided. This area may need some special considerations before any recovery can be realized.

Moving the allotment fence as indicated by the Area Manager and giving this area total rest for a couple years may be desirable.

5. Due to the variations within the allotment key species and objectives should be established for each key area or at least by pasture. This should make the objectives and responses more realistic and measureable.

It is not recommended that Poa pratensis be selected as a key species. This species is not a good indicator of trend.

3) Curlew Area. The recommendations for the Roy-Arbon Unit also apply to this area.
PLEASANTVIEW ALLOTMENT

ACREAGE & STATUS

NRL 59,946
STATE 3,200
PVT. 7,534

70,680

ADJUDICATION COMPLETED 1966
LICENSED ON 90% FEDERAL RANGE
RANGE SURVEY - 7,896 AUM'S AVAILABLE FOR LIVESTOCK
RATHER THAN TAKE 56% REDUCTION, A REST, ROTATION SYSTEM WAS
ACCEPTED. MAXIMUM BASE PROPERTY QUALIFICATIONS WERE RECOGNIZED
(18,154 AUM'S CLASS I).

STOCKING RATE = 3.3 ACRES/AUM.
USE HAS AVERAGED 15,300 AUM'S (3.9 ACRES/AUM).

69 OPERATORS AVERAGE HERD SIZE = 70 CATTLE
SEASON OF USE: MAY 1 THROUGH AUGUST 30
9.5% 7.354 Prime
4.5 3.345 Rate
85% 59.46 P.D.

PM 1946 Earned Service
1934 Division of Benefits

1948 July 6th
60 35
Mar.-June 45%

14.2" Annual Precip.

7,600 Acres 20 miles x 12 miles

(NEST HILLS)
Pleasant View Allotment
Slides 1-7

Resources and uses

Character of range
Timber DF, aspen
Watershed - underground thd
Wildlife
 Deer, fur bearers etc.
 Game birds
 Song birds
 Recreation, aesthetics
 Camping, picnicking

Prime use
Livestock
 Sheep, cattle
 1860+ cattle (now)

Importance to communities
 Mated etc
Range situation 1965

Association 82 members
10 to 300 hd are 58 hd

Stocking 4 to 80 hd cows, calves

Season Apr.-May.-Aug.31
20 % Sept. 15

Stocking rate 4.2 acres per AUM

The situation

Range use and condition

Water and distribution problem
Sheep Creek Sprs. 3 No live
Wood Canyon Sprs. streams
Water gaps 2 miles + to streams
Water hauled
11,000 acres not used lack of H2O

Actual stocking rate based on used area 3.6 AUM

(3)
Better management needed
58% reduction indicated convention of management
Fallini - Hormay size up in terms RR

Develop H3O and bring entire range area into use

No cut Enough seed for RR
6 pasture system
1/3 area rested
Stocking rate
with H3O
without "

2.80 Acs/AUM
2.37 Acs/AUM

The formula

Purpose
Multiple-use

A B C D E F

Rest Vigor Seed Reprod Litter
Reasons for 6 pastures

Seedlings
Handling and moving stock
Water development imperative

Cultural work

Prob. needed in bottom
speed recovery

But no action until water
and fence in and responses
to 4 or 5 years of manage-
ment observed.
Action to date

1. Fences built in fall 1935
2. H_2O First serious action. 1969. Water system in process of development. Little if any additional means range area brought into use to date.
3. Seed and spraying 1965-67
 1965 Wood Canyon (S. Spr)
 1966 North, Wood (S. aspen)
 1967 West Elkhorn (“”)
 1968 John Evans (Spr chiff and)

Slides, Range responses

16
Management problems

1. Capacity in spring pastures until seed ripe time July 15 (2 weeks)
 Develop H2O 11,000 acres into use 22 days additional grazing season.

2. Moving between pastures mid season
 H2O development up high and near pasture boundary fences

3. Adjust formula
 2 Three pasture systems
 Old seed spring time
 More rest vigor.

4. Change fence locations if needed.
RR Pleasant View crash program

Normal

Planners
 (Land managing agency
 BLM, FS, State, Park Service
 etc
 Stake man (user) tool
 F&S Dept.
 SCS
 Extension Service
 Others)

Re-planning

Multi-use interests
 education RR principles
 observe results

Slides

People